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We analyze the thermodynamic properties of a simplified model for folded RNA molecules recently studied
by Vernizzi, Orland, and Zee �Phys. Rev. Lett. 94, 168103 �2005��. The model consists of a chain of one-flavor
base molecules with a flexible backbone and all possible pairing interactions equally allowed. The spatial
pseudoknot structure of the model can be efficiently studied by introducing a N�N Hermitian random matrix
model at each chain site, and associating Feynman diagrams of these models to spatial configurations of the
molecules. We obtain an exact expression for the topological expansion of the partition function of the system.
We calculate exact and asymptotic expressions for the free energy, specific heat, entanglement, and chemical
potential and study their behavior as a function of temperature. Our results are consistent with the interpretation
of 1 /N as being a measure of the concentration of Mg2+ in solution.
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The applications of mathematical and statistical mechan-
ics techniques to study suitable biological problems has been
a successful area of recent research interest �1–3�. In particu-
lar, the study of the spatial and topological �pseudoknot�
structure of DNA and RNA molecules is a successful ex-
ample of the above �4–11�. A RNA molecule is a heteropoly-
mer strand made up of four types of nucleotides: Uracil �U�,
adenine �A�, guanine �G�, and cytosine �C�. The sequence of
these bases from the 5� to the 3� end defines the primary
structure of the molecule. In solution, at room temperature,
different bases can pair with each other by means of saturat-
ing hydrogen bonds to give the molecule a stable shape in
three dimensions, with U bonding to A, C to G, and wobble
pair G to U, all with different interaction energies. This last
interaction �non-Watson-Crick base pair� together with trip-
lets, quartets, etc., has a important role in fold of the RNA
molecule �12–15�. The effect of stacking interactions also
contributes to the stability of the molecule, making sets of
adjacent bonds twist into the familiar Watson-Crick helices.
Among all possible structures that arise from interaction be-
tween the bases, one defines the secondary structures of a
RNA molecule as all structures which are represented by
planar arc diagrams, that is, no crossing of arcs in a repre-
sentation resembling a Feynman diagram. When the dia-
grams are nonplanar, one says that a RNA molecule contains
one or more pseudoknots �see �16,17� for a general definition
and �18� for a discussion on the planarity of the diagrams�.
Finally, one defines the tertiary structure of RNA as the ac-
tual spatial three-dimensional arrangement of the base se-
quence.

Several methods have been successfully used to study the
folding dynamics of RNA molecules in various conditions.

Some of these are based on statistical mechanics models,
which usually avoid the complexities related to the dynami-
cal evolution of the real world molecules, but allowing for a
simple, kinematical treatment of the proposed models.
Therefore, the study of these models can shed light on the
intricate molecular dynamics and is our main motivation for
considering them. In this paper, we study a simplified model
of a RNA-like molecule considered in �5� in which the geo-
metric degrees of freedom of the system, such as the stiffness
and the sterical constraints of the chain, are not taken into
account. In addition, they consider that all pairs of bases
interact with a common pairing strength �the assumption of
neglecting disorder along the sequence is actually a classic
approximation �19��. Moreover, the model keeps the funda-
mental property of saturation of the interactions, that is,
given a base in the chain it can interact �following the rules
mentioned above� with only one other base at a time. The
study of this model is interesting in itself and has motivated
some interesting work in the literature, including the case of
the planar diagram limit �no pseudoknots� �20–22�, and the
study of the tertiary structure of the RNA molecule �see, for
instance �5–9��. Moreover, the model allows for some exact
calculations including the partition function, the specific
heat, and some other thermodynamical and physical quanti-
ties. Therefore, the study of the physical properties of this
model could be considered as a first approximation or a limit
case for more realistic RNA models. A natural extension of
the model in �5� towards more realistic ones �for example,
including different interactions between the bases� could be
developed by simple modifications of a matrix potential.

The authors of �5� consider a system of L molecules
�nucleotide bases� forming a lineal macromolecule with the
shape of a chain. They do not describe the formation of the
backbone, but only the interaction between links of the chain
that produce the folding of the RNA macromolecule �see Fig.
1�. Each base can interact through an attractive force with*Also at CONICET, Argentina.
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any other base of the chain. However, once a given molecule
has paired with another, it will not interact again with an-
other. In this case, it is said that the interaction between these
bases saturate.

Although the bases that form the RNA molecule interact
with different pairwise energies, a first simple approximation
is to consider that this energy is the same for all bonds, and
that any paring of bases is assumed to be feasible. This
amounts to considering just one type of base and no further
selection rules. Note that if all energies are equal, then the
Boltzmann factors v=e−�/�T �where T is the absolute tem-
perature and � is the Boltzmann constant which we will
equal to 1� are equal as well. The configurational partition
function of a molecule of size L in the model in �5� can be
written as

Z�L,N,T� =
1

N
�tr�1 +

1

L1/2��L�
=
	 d�e−�N/2Lv�tr �2 1

N
tr�1 +

1

L1/2��L


d�e−�N/2Lv�tr �2 , �1�

where � is a random N�N Hermitian matrix and Z depends
on T through v. Note that the simple form of �1� is only a
consequence of the symmetry of the matrix potential that
reduces the original integration over L matrices to one inte-
gration over � �5�. From the theory of random matrices �see,
for example, �23�, pp: 140–142� it follows that

�tr �2k� =
�2k�!

k!
� Lv

2N
�k



j=0

k �k

j
�� N

j + 1
�2 j , �2�

where all averages are performed with respect to the Gauss-
ian measure d�e−�N/2Lv�tr �2

. Replacing this into �1� and tak-
ing into account that �tr �k�=0 for k odd, we arrive at

Z�L,N,T� = 

k=0

�L/2�



j=0

k � L

2k
��k

j
�� N

j + 1
� �2k�!

2k−jk!Nk+1vk, �3�

where the symbol �L /2� means the integer part of L /2. From
�3� we may compute �for each L� Z exactly, as a function of
N and T. The large-N asymptotic expansion of Z has a well-
known topological meaning �24�: The power of v is the num-
ber of arcs in the diagram, and the power of 1 /N2 is the
genus g of the diagram. It is therefore convenient to write �3�
in following form:

Z�L,N,T� = 

k=0

�L/2�

dk�L,N�e−�k/T, �4�

where �k=k� and

dk�L,N� = 

j=0

k � L

2k
��k

j
�� N

j + 1
� �2k�!

2k−jk!Nk+1 . �5�

From �4� we see that the spectrum of the system has
�L /2�+1 possible energies 0 ,� ,2� , . . . , �L /2�� and the de-
generacy of the kth level is dk�L ,1�. For example, for L=7
the maximum energy of a configuration is 3� and there are
d3�7,1�=105 different configurations with that energy.
Moreover, considering �5� as a function of N yields its topo-
logical information, e.g., for L=7, d3�7,N�=35+70 1 /N2,
which means that out of the total 105 configurations with 3�,
35 have genus 0 and 70 have genus 1.

Next, we calculate the partition function in the large N
limit, which is the planar limit, using the results of �25�. For
completeness, we quote here the results relevant for ours. We
define the resolvent W�p�,

W�p� =
1

N
�tr� 1

p − �
�� = 


n=0

� �1

p
�n+1

Wn, �6�

where p is a complex variable, and

Wn =
1

N
�tr �n� . �7�

In the large N limit, the resolvent is given by the solution to
the following equation called Pastur’s equation �26� �in the
limit g→0 and c→0, in �25��:

W2�p� − pW�p� + 1 = 0, �8�

which is

W�p� = 

k=0

�

Ck
1

p2k+1 = 

k=0

� �2k

k
�

k + 1

1

p2k+1 , �9�

where Ck are the Catalan numbers �27�. From �9� we obtain

�tr �2k� =
�2k

k
�

k + 1
Lkvk. �10�

With �10� we write the partition function in the large N limit.
We consider the case N=1 for comparison purposes as well,

Z�L,N → �,T� = 

k=0

�L/2�
L!

�L − 2k�!k!�k + 1�!
vk, �11�

Z�L,N = 1,T� = 

k=0

�L/2�
L!

�L − 2k�!k!2kvk. �12�

Note that both expressions for Z are very similar, except for
the factors �k+1�! and 2k in the denominators of the expan-
sion coefficients. Noting that the first factor is larger than the
second, we conclude that Z�N→���Z�N=1�. The interpre-
tation of this result is clear if we recall that, for v=1, Z�N
→�� counts the planar diagrams only, whereas Z�N=1�
counts both the planar and nonplanar diagrams �5–8�. More-
over, we verify that both partition functions coincide for val-

FIG. 1. Arc diagram representation of the interacting pairs �1,3�
and �2,6� and its respective folded diagram.
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ues of L smaller than 3 as they should given that all diagrams
are planar in these cases. Furthermore, in these two limiting
cases, the partition function can be written as in terms of
hypergeometric functions:

Z�L,N = 1,T� = 2F0�−
L

2
,−

L

2
+

1

2
;2v� , �13�

Z�L,N → �,T� = 2F1�−
L

2
,−

L

2
+

1

2
;2;4v� , �14�

where pFq�a� ;c� ;z�=
k=0
� �a1�k. . .�ap�k

�c1�k. . .�cq�k

zk

k! and �a�k= ��a+k�
��a� are the

k-order Pochhammer symbols. We remark here that the re-
sults �13� and �14� are exact.

As we mentioned before, the power of 1 /N2 yields the
genus g of the diagram, that is, the minimum number of
handles of the surface on which the diagram can be drawn
without crossings. From table of values of Z for the smallest
values of L in �5� we notice, for instance, that for L=5 the
number of planar diagrams on the sphere is 21 and the num-
ber of non-planar diagrams that can be drawn on a torus
without crossings is 5. Next, we would like to write
Z�L ,N ,T� in the form of a topological expansion �24,5,6�,
that is, as a power series in the variable 1 /N2,

Z�L,N,T� = 

g=0

�

zg�L,T�
1

N2g , �15�

where zg�L ,�� is, for a molecule of size L, the number of
planar diagrams in a topological surface of genus g. For the
example of the preceding paragraph, we have z0�5,��=21
and z1�5,��=5. Note that zg�L ,T�, as a function of T, is the
partition function of the system living on the topological
surface of genus g. In order to bring the partition function to
the form �15�, we first define the auxiliary function

Gk�N� = 

j=0

k �k

j
�� N

j + 1
� 2 j

Nk+1 . �16�

This function contains all the N dependence of �3�. Below,
we write the binomial coefficient as

� N

j + 1
� =

1

�j + 1�!
N�N − 1� ¯ �N − j� =

1

�j + 1�! 

m=0

j+1

Sj+1
�m�Nm,

�17�

where Sj
�m� is the Stirling number of the first kind �27,28�

with parameters m , j �in turn, we define Sj
�m�=0 if m� j or if

j�0�. Replacing �17� in �16�, we obtain

Gk�N� = 

j=0

k �k

j
� 2 j

�j + 1�! 

m=0

j+1
Sj+1

�m�

Nk+1−m . �18�

Now, if we want to obtain the O�1 /N2g� of Gk�N� �we indi-
cate this by Gk

�2g��N��, we must require that k+1−m=2g,
then j=k−2g, k−2g+1, . . . ,k. To obtain all orders of N we
must add all possible values of g,

Gk�N� = 

g=0

�

Gk
�2g��N� = 


g=0

�



j=k−2g

k �k

j
� 2 j

�j + 1�!
Sj+1

�k+1−2g�

N2g ,

�19�

replacing in �3� we obtain �15� with zg�L ,T� given by

zg�L,T� = 

k=0

�L/2�



j=k−2g

k
L!2 j−kSj+1

�k+1−2g�

�L − 2k�!�k − j�!j!�j + 1�!
e−�k/T.

�20�

In the limit T→�, zg�L ,T� coincides with aL,g of �5�. Using
the above-mentioned property of the Stirling numbers, we
see from �20� that the maximum genus of a diagram for a
given L is �L /4�, therefore g� �L /4�. An analysis of the
T-dependent phase transition from the topological expansion
of the partition function will be given in a future presentation
�29�.

In the rest of this paper, we analyze the thermodynamic
properties implied by the partition functions �3� by studying
some interesting observables. We start by considering the
entanglement �nonlocal two-point correlation function� be-
tween two bases of the chain in our model. For that, we use
the following definition for the correlation between the mol-
ecules i and j �i	 j� of the chain of size L:

�i, j� =
Z�j − i,N,T�

Z�L,N,T�
, �21�

where Z�j− i ,N ,T� is the partition function for the molecule
including bases i up to j. For the case of periodic boundary
conditions we have Z�j− i ,N ,T�=Z�j− i+1,N ,T�. In the
low-temperature limit the partition function becomes inde-
pendent of N �in this limit only configurations up to two
bases interacting are possible, it is, planar configurations�.
Therefore, we have the same result for both the N=1 and
N→� cases,

�i, j� =
1 + 1

2x�x + 1�v
1 + 1

2L�L − 1�v
� 1 −

1

2
�L2 − x2�e−
�, �22�

with L�1, x= j− i�1 �provided 
�� ln�L2 /12�+ln�2
+1 /N2��. The physical behavior of this observable can be
obtained by considering the situation where x is large, yield-
ing �i , j��x2, which can be interpreted as a signal of con-
finement �long-range order with critical exponent −2�. This
behavior is coherent with the interpretation of the model as
describing a folded RNA molecule. Note that the exponent
�−2� for the long-range order coincides with the value found
in �20,30�.

Going ahead with our study of observables of the model,
we now calculate the normalized free energy f , or free en-
ergy per molecule, in the limit of low temperature,

f�L,N,T� =
F�L,N,T�

L
= −

1


L
ln�Z�L,N,T�� , �23�

where F is the free energy of the system. For T�1, both the
N=1 and N→� cases yield
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f�
 � 1� = −
1

2
�L − 1�

e−
�



. �24�

Furthermore, for the special case of v= 1
4 �for which 


=ln 4 /�� we obtain

f�N → �,v = 1/4� = −
1



ln�2� . �25�

Next, we define the chemical potential of the model as


�L,N,T� =
�F�L,N,T�

�N
= −

T

Z�L,N,T�
�Z�L,N,T�

�N
. �26�

The interpretation of 
 is the following: We consider that
there is a gas of N particles in the internal space of the
random matrices at each site of the chain of size L. The
chemical potential measures the response of the system to a
change in the size N of the matrix �. On the other hand, the
concentrations of secondary and tertiary structures can be
separated experimentally by varying the concentration of
Mg2+ ions in solution �31,6,9�; in the original model �5�, one
can assign this role of regulation to N, as it is mentioned in
�9� and can be seen from �15� that this dependency is how
1 /N��Mg2+�. Therefore, the chemical potential 
 can be
considered as a measure of the influence of the concentration
of Mg2+ ions in solution on the system. From �15� we see
that, in the large N limit, Z is O�1� and �Z /�N is O�1 /N3�,
therefore 
 is O�1 /N3� in the form


�L,N,T� =
2T

N3

z1�L,T�
z0�L,T�

+ O�1/N5� . �27�

In the large N limit, we obtain the partition functions on the
sphere and on the torus, z0 and z1, respectively, and write
down the chemical potential �see �28� for explicit expres-
sions of Sn

�n−���,


�L,N,T� �
T

6N3 �k3 − k�0, �28�

where the averages are defined as

�rk�0�L�

= 

k=0

�L/2�
e−�k/Trk

�L − 2k�!k!�k + 1�!� 

k=0

�L/2�
e−�k/T

�L − 2k�!k!�k + 1�!
,

�29�

and are labeled by the subindex 0 in order to distinguish
them from the previously defined ones. Using numerical cal-
culations, it can be seen that for T�1, �k3�0� �k�0 and �k3�0
is independent of T, then


�L,N,T � 1� �
�k3�0

6N3 T , �30�

whereas for T�1, we see that the dependence of 
 on T is
given by


�L,N,T � 1� �
�L − 3�4

12N3 Te−2�/T. �31�

The limits we have just discussed are summarized graphi-
cally in Fig. 2. For any value of the temperature, the system
will tend to configurations with large N, because this mini-
mizes the chemical potential. In this regime of N, the con-
centration of positive ions in solution is small, and the con-
figurations of the molecules will tend to be planar.

The previous expressions for 
 lead us to a consistent
physical interpretation of the parameter N. We recall that
�32�:

�S

�N
= −




T
, �32�

where S is the entropy. From Eqs. �30� and �31�, one can see
that S�1 /N2 in both T→0 and T→� limits. Therefore, the
entropy vanishes for N→�, which is also the limit in which
the topology of the molecule is spherical �by the topology of
a molecule, we mean topology of the Feynman diagrams
associated with the configuration of the molecule�. This sug-
gests that S could be considered as an indicator of the spatial
topological configurations of the molecule. One can argue
that the genus of the molecule is largely determined by the
conditions of the surrounding medium, such as the concen-
tration of Mg2+ ions. The competition between the interac-
tion of a given base molecule with other molecules in the
chain and with the ions of the medium regulates the folding
of the chain and therefore, its genus. One may assume that
the concentration of ions in the medium should be monoto-
nous functions of 1 /N. Therefore, we arrive at the conclusion
that the internal parameter N, introduced by hand as a con-
venient variable for organizing the topological configura-
tions, could be given the physical interpretation of represent-
ing the inverse quantity of the ion concentration of the
medium �6,9,18�.

Next, we consider the specific heat at constant volume �in
this case the volume is the size of the chain V=L�:

L�1000

L�500

L�300

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

0.1

0.2

0.3

0.4
Μ�T�

FIG. 2. �Color online� Chemical potential as a function of the
temperature for N=100.
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CV�T� = − T� �2F

�T2�
L
. �33�

The graph of CV against the temperature �Fig. 3�a�� has the
particular shape characteristic of the system with finite en-
ergy levels �see comment after Eq. �5��. The characteristic
temperature Tch corresponds to the position of the peak in CV
showed in the graphs. For temperatures above and below Tch,
the specific heat decreases rapidly. This well-known behavior
of the specific heat with temperature is known as the
Schottky anomaly �32,33� and it is a general property of
systems with energy levels with discrete degeneracy �see dk
above�. In the low-temperature region, we have

CV�T � 1� � k� �

2kT
�2

sech2� �

2kT
− ln�L�L − 1�

2
� .

�34�

In this limit, the specific heat coincides with that for a two-
level system, since for low enough temperatures, the system

will only be able to access the ground state and the first
excited state. In Fig. 4, we plot the exact specific heat from
�33� and the low-temperature approximation from �34�. Fur-
thermore, we may define the topological specific heat as

Cg�T� = − T� �2Fg

�T2 �
L,g

, �35�

where Fg�L ,T�=−�T ln�zg�L ,T��. Note that Cg can be iden-
tified with the specific heat restricted to the diagrams on the
topological surface of genus g. In Fig. 3�b� we show that the
higher peaks correspond to the lower genera. This agrees
with the intuitive argument that considers a molecule with
higher genus as strongly folded and, therefore, with reduced
number of degrees of freedom. We can carry out the same
analysis for CV, given that the addition of a new base mol-
ecule increases the number of degrees of freedom of the
system. In this sense, we can consider the relation L�1 /g.

In conclusion, we have studied several thermodynamical
and topological aspects of the simplified model of RNA of
�5�. We have presented an exact expression for the partition
function of the system, and gave an interpretation of the
degeneracy of each energy level as a function of N. Further-
more, we have calculated the topological expansion of the
partition function of the model, in which the coefficients of
the expansion can be interpreted as the reduced partition
functions for systems restricted to topological surfaces of
genus g. We showed that the maximum genus of the configu-
rations is �L /4�, for a molecule of size L. Moreover, we have
calculated asymptotic expressions for some thermodynami-
cal observables, as a function of the temperature. Analyzing
the expressions for the chemical potential and entropy,
within our data, we find a consistent interpretation relating
the variable 1 /N �arising from the matrix model� and the
concentration of Mg2+, as it has been suggested in �6,9�.

M.dE. thanks to Matías Reynoso for helpful discussions.
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FIG. 4. �Color online� Exact and low-temperature approxima-
tion for the specific heat with L=20 and N=1.
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FIG. 3. �Color online� �a� CV�T� for N=10 and L=100,200,300. �b� Cg�T� for L=100 and g=0,10,20.
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